C# :: Aufgabe #195 :: Lösung #1
3 Lösungen

#195
Berechnung des mittleren Punktabstandes in geometrischen Formen
Anfänger - C#
von hollst
- 17.12.2017 um 21:21 Uhr
In mathebord regt man sich u. a. darüber auf,
dass man bei einer Monte-Carlo-Simulation zur Berechnung des mittleren Abstandes
zweier Punkte in einem Rechteck über 4 Sekunden benötigt (bei 1 Mio. zufälligen Experimenten).
Außerdem wird in der Antwort vom 22.10.2013 (23:10) auch noch ein falsches Ergebnis unkommentiert präsentiert.
Nun gut, das war vor etwa 5 Jahren und Hard- sowie verwendete Software waren auch nicht Stand der damaligen Technik.
Wir wollen versuchen, es hier schneller und besser zu bewerkstelligen.
Aufgabenstellung: Für die fünf (euklidischen) Formen gerade Linie, Quadrat, Rechteck, Kreis und Ellipse
schätze man den mittleren Abstand zweier Punkte innerhalb der genannten geometrischen Formen ab, bezogen auf den Umfang der entsprechenden Form. Die Umfangspunkte gehören mit zu der Form. Für die Linie sei der Umfang die doppelte Linienlänge
(Rechteck mit zwei verschwindend kleinen Parallelseiten).
Die Simulation soll mittels 1.000.000 Zufallsexperimenten vorgenommen werden.
dass man bei einer Monte-Carlo-Simulation zur Berechnung des mittleren Abstandes
zweier Punkte in einem Rechteck über 4 Sekunden benötigt (bei 1 Mio. zufälligen Experimenten).
Außerdem wird in der Antwort vom 22.10.2013 (23:10) auch noch ein falsches Ergebnis unkommentiert präsentiert.
Nun gut, das war vor etwa 5 Jahren und Hard- sowie verwendete Software waren auch nicht Stand der damaligen Technik.
Wir wollen versuchen, es hier schneller und besser zu bewerkstelligen.
Aufgabenstellung: Für die fünf (euklidischen) Formen gerade Linie, Quadrat, Rechteck, Kreis und Ellipse
schätze man den mittleren Abstand zweier Punkte innerhalb der genannten geometrischen Formen ab, bezogen auf den Umfang der entsprechenden Form. Die Umfangspunkte gehören mit zu der Form. Für die Linie sei der Umfang die doppelte Linienlänge
(Rechteck mit zwei verschwindend kleinen Parallelseiten).
Die Simulation soll mittels 1.000.000 Zufallsexperimenten vorgenommen werden.
#1

von hollst (13980 Punkte)
- 22.12.2017 um 11:33 Uhr

using System; using static System.Console; using static System.ConsoleKey; //http://www.matheboard.de/archive/529571/thread.html //http://www.matheboard.de/archive/25782/thread.html namespace mittlerer_abstand_zweier_kreispunkte { static class Program { static string NL = Environment.NewLine, Version = "version 18.12.2017" + NL; static void Main() { Version.MessageLine(); bool bo_loop = true; while (bo_loop) { int max_trails = (int)1e+6; double r1 = 0, r2 = 0; bool bo_input_okay = false; while (!bo_input_okay) { "give me r1: ".Message(); string string_input = ReadLine(); bo_input_okay = double.TryParse(string_input, out r1) && (r1 >= 0.0); } bo_input_okay = false; while (!bo_input_okay) { "give me r2: ".Message(); string string_input = ReadLine(); bo_input_okay = double.TryParse(string_input, out r2) && (r2 >= 0.0); } string[] info = { "line ", "quad ", "rect ", "circle ", "ellipse " }; double[][] radii = new double[][] // die formenmittelpunkte liegen bei (0.0, 0.0) { new double[]{r1, 0.0}, new double[]{r2, 0.0}, //line new double[]{r1, r1}, new double[]{r2, r2}, //quadrat new double[]{r1, r2}, new double[]{r2, r1}, //recheck new double[]{r1, r1}, new double[]{r2, r2}, //kreis new double[]{r1, r2}, new double[]{r2, r1} //ellipse }; Delegate [][] deligierte = new Delegate[][] // regarding radii { new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Quad_Rect_Line, (IsIn_Area)MyDistance_Delegates.IsIn_Quad_Rect_Line }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Circle_Ellipse, (IsIn_Area)MyDistance_Delegates.IsIn_Circle_Ellipse }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Circle_Ellipse, (IsIn_Area)MyDistance_Delegates.IsIn_Circle_Ellipse }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Circle_Ellipse, (IsIn_Area)MyDistance_Delegates.IsIn_Circle_Ellipse }, new Delegate[] { (Circumference)MyDistance_Delegates.Circumference_Circle_Ellipse, (IsIn_Area)MyDistance_Delegates.IsIn_Circle_Ellipse } }; (NL + "Results from Class_Mean_Distances in a Loop").MessageLine(); for (var i = 0; i < radii.Length; i++) { Class_Mean_Distances cmd = new Class_Mean_Distances(radii[i][0], radii[i][1], max_trails, (Circumference)deligierte[i][0], (IsIn_Area)deligierte[i][1]); $"{info[i / 2]}max_trails: {max_trails.ToString("n0")} r1: {radii[i][0],10} result = {(100.0 * cmd.result).ToString("0.0000"),5} % r2: {radii[i][1],10}".MessageLine(); } (NL + "test circumference calculation for ellipse").MessageLine(); Class_Mean_Distances cmd_exact = new Class_Mean_Distances(r1, r2, max_trails, MyDistance_Delegates.Circumference_Ellipse_exact, MyDistance_Delegates.IsIn_Circle_Ellipse); $"exact: max_trails: {max_trails.ToString("n0")} r1: {r1,10} result = {(100.0 * cmd_exact.result).ToString("0.0000"),5} % r2: {r2,10} U_exact: {cmd_exact.U.ToString()}".MessageLine(); cmd_exact = new Class_Mean_Distances(r1, r2, max_trails, MyDistance_Delegates.Circumference_Circle_Ellipse, MyDistance_Delegates.IsIn_Circle_Ellipse); $"approx: max_trails: {max_trails.ToString("n0")} r1: {r1,10} result = {(100.0 * cmd_exact.result).ToString("0.0000"),5} % r2: {r2,10} U : {cmd_exact.U.ToString()}".MessageLine(); ConsoleKeyInfo ki = "press any key (exit => ESC)".ReadKey(bo_NL: true); bo_loop = !(ki.Key == Escape); } "ready, press a key".ReadKey(true); } #region expansions public static void Message(this string s) => Write(s); public static void MessageLine(this string s) => WriteLine(s); public static ConsoleKeyInfo ReadKey(this string s, bool bo_NL = false) { if (bo_NL) s.MessageLine(); else s.Message(); return System.Console.ReadKey(true); } #endregion } // define delegates public delegate double Circumference(double r1, double r2); public delegate bool IsIn_Area(double r1, double r2, double x, double y); public static class MyDistance_Delegates // create methods for the delegates { public static bool IsIn_Quad_Rect_Line(double r1, double r2, double x, double y) => true; //quad: r2 = r1; line: r2 = 0 public static double Circumference_Quad_Rect_Line(double r1, double r2) => 4 * (r1 + r2); //quad: r2 = r1; line: r2 = 0 public static bool IsIn_Circle_Ellipse(double r1, double r2, double x, double y) //circle: r2 = r1 => ((x - r1) * (x - r1) * r2 * r2 + (y - r2) * (y - r2) * r1 * r1 <= r1 * r1 * r2 * r2); public static double Circumference_Circle_Ellipse(double r1, double r2) //circle: r2 = r1 { double lambda = (r1 - r2) / (r1 + r2); //approximation from Ramanujan; for circles (lambda = 0) exact return Math.PI * (r1 + r2) * (1.0 + 3 * lambda * lambda / (10.0 + Math.Sqrt(4.0 - 3.0 * lambda * lambda))); } public static double Circumference_Ellipse_exact(double r1, double r2) //circle: r2 = r1 //see https://de.wikipedia.org/wiki/Ellipse { double lambda = (r1 - r2) / (r1 + r2), lambda_quadrat = lambda * lambda; double error = 1.0E-16; //1.0E-38; double sum = 1.0, sum_old = 0.0, sum_n = 1.0; double no = 1, nu = 1; int n = 0; while((sum - sum_old) > error) { sum_old = sum; no = (2 * n - 1); nu = (2 * n + 2); double q = (double)no / (double)nu; sum_n *= lambda_quadrat * q * q; sum += sum_n; n++; } $"n from Circumference_Ellipse_exact: {n.ToString("n0")}".MessageLine(); return sum * Math.PI * (r1 + r2); } } public class Class_Mean_Distances // with use of delegates { private double r1, r2; private int max_loops; private Circumference circumstance; private IsIn_Area bo_isinarea; private Random rand = new Random(); public double U, result; public Class_Mean_Distances(double r1, double r2, int max_loops, Circumference circumstance, IsIn_Area bo_isinarea) { this.r1 = r1; this.r2 = r2; this.max_loops = max_loops; this.circumstance = circumstance; this.bo_isinarea = bo_isinarea; this.run(); } private void run() { int counter = 0; double distance = 0.0; while (counter < max_loops) { double[][] xy = new double[2][]; for(var i = 0; i < xy.Length; i++) { bool bo = false; while (!bo) { double x = rand.NextDouble() * 2 * r1; double y = rand.NextDouble() * 2 * r2; xy[i] = new double[] { x, y }; bo = bo_isinarea(r1, r2, xy[i][0], xy[i][1]); } } double act_distance = Math.Sqrt((xy[0][0] - xy[1][0]) * (xy[0][0] - xy[1][0]) + (xy[0][1] - xy[1][1]) * (xy[0][1] - xy[1][1])); distance += act_distance; counter++; } U = circumstance(r1, r2); this.result = (distance / max_loops) / U; } } }
Kommentare:
Für diese Lösung gibt es noch keinen Kommentar
Seite 1 von 0
1